CS 331, Fall 2024
Lacture 2 (8128)
Today: - Recussion trees
Lacture 2 (8128)
Tecursion trees (Pirt II, Section 3)
Accel Geometric series has form

$$d_0 + d_0r + d_0r^2 + \dots + d_0r^k = d_0 \sum_{i=0}^{k} r^i$$

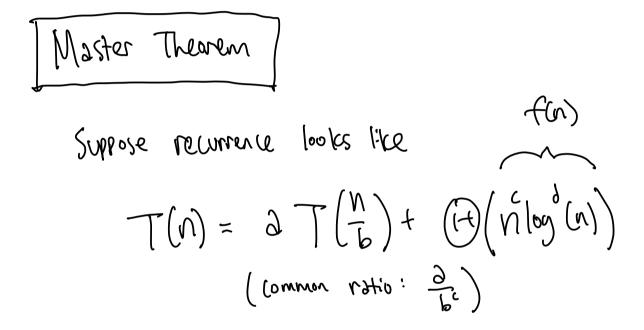
form
Lern
Series evaluates to... (see Lemma S, Part I)
Series evaluates to... (see Lemma S, Part I)
 $d_0 \sum_{i=0}^{k} r^i = r^{ki} - 1 \approx (A(d_0))^{ki}$ (Last form downlates"
 $d_0 \sum_{i=0}^{k} r^i = r^{ki}$
 $d_0 (k+i)$
 $d_0 (k+i)$
 $r=1$

lde s: him the numbule of recursive slop as geometric sequence.
Standard recurrence:
$$T(n) = aT(\frac{n}{b}) + f(n)$$

of subproblem base
subproblems size cost
(Standle) $T(n) = 3T(\frac{n}{2}) + O(n)$ (multiplication)
lavel 0 (Cost: O(n)
lavel 1 (Clair) (Clair) (Cost: O(n)
lavel 2 (Clair) (Clair) (Clair) (Clair)
lavel 2 (Clair) (Clair) (Clair) (Clair)
lavel k ... $O(\frac{qn}{2})$
lavel k ... $V = [log_e(n)]$
(avel k ... $V = [log_e(n)]$
(avel k ... $V = T(n) = aT([\frac{n}{2}]) + 2a)T([\frac{n}{2}]) \dots$
eg. Gait split odd-szed lats exactly in holf.
OK to ignore in this course, See lactive notes.

In this class,
$$f(n)$$
 almost always of the form
 $f(n) = \Theta(n^{c} \log^{d}(n))$ for $\frac{C > 1}{2 > 0}$

In that case, we can use the ...



$$T(n) = (H)(f(n))$$

$$(C > log_{b}(\Delta)): T(n) = (H)(f(n))$$

$$(C < log_{b}(\Delta)): T(n) = (H)(n^{log_{b}(\Delta)})$$

$$(L = log_{b}(\Delta)): T(n) = (H)(f(n)log(n))$$

The most famous recurrence in algos: $T(n) = 2T(\frac{n}{2}) + O(n).$ Balanced case: T(n)= O(nlog(n)) C.g. Mergesort (18, 1, 7, 6, 45, 3, 9, 0) Sort two halves recursively $\left(\right)$ $\left(\begin{array}{cccc} 1 & 6 & 7 & 18 \end{array} \right) \left(\begin{array}{cccc} 0 & 3 & 9 & 45 \end{array} \right)$ $forst half: T(\frac{n}{2}) \qquad \text{Second half: } T(\frac{r}{2})$ Stitch two holves together 2 (1 & 7 & 18)(0 & 3 & 9 & 45) $(0 & 1 & 3 & 6 & \dots$

Why? Recursion fairy sorted the halves. Just keep peeling off the simplest element.

Merge Sort (L):

$$N \in |L|$$

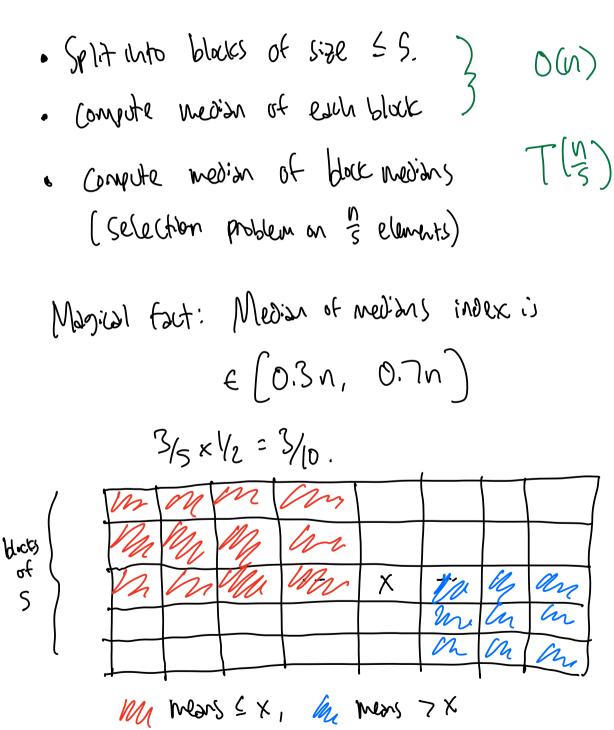
If $n==1$: return L
 $G(se:$
 $L_i \in L(1: \lfloor \frac{n}{2} \rfloor), L_2 \in (\lfloor \frac{n}{2} \rfloor + 1:n)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in Merge Sort (L_i)$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in L_i \cap L_i$ Runtime: $T(\lfloor \frac{n}{2} \rfloor)$
 $L_i \in L_i \cap L_i$ Runtime: $L_i \in L_i \cap L_i$
 $L_i \in L_i \cap L_i$ Runtime: $L_i \in L_i \cap L_i$
 $L_i \in L_i \cap L_i$ Runtime: $L_i \in L_i \cap L_i$
 $L_i \in L_i \cap L_i$ Runtime: $L_i \in L_i \cap L_i$
 $L_i \in L_$

Main claim: We can solve selection in

$$O(n)$$
 time, for all it (n).
Application: Median in linear time.
Application: Deterministic Quick Sort.
 \overrightarrow{Aside} Quicksort is a single sorting also.
(i) $x \in Find P.vot(L)$
 $fasiest Choice: random element
(i) $L \in P.vot(L(x))$ $O(n)$ time.
 $Lucky pivot$ $\underbrace{Intucky pivot}$
 $\underbrace{fix} | x | > x$ $\underbrace{fix} > x$
(i) Quicksort two hives recursively.
If we're lucky, x is near the edges, recursion death $O(n)$$

Selection
$$(L_{1}i)$$
:
 $N \in |L|$
 $H = 1$: return LC :
 Gye :
 $X \in FindPiot(L)$ *IITBD*.
 $(K_{1}L) \in Pinot(L, X)$ *II* L is privated sound X.
 $H = 2i$: Return X
 $H = 2i$: Return X
 $K = L(K)$.
 $H = 2i$: Return X
 $H = 2i$: $H = 2i$
 $H = 2i$: $H = 2i$
 $H = 2i$: $H = 2i$
 $H = 2i$
 $H = 2i$: $H = 2i$
 $H = 2i$
 $H = 2i$
 $H = 2i$: $H = 2i$
 $H =$

How to use pivoting to solve Selection? [dea: avoid unlucky pivots using recursion.



'Median of medians" pivot. (ost

Proof of Key Clam